Bio-Engineering High Performance Microbial Strains for MEOR by Directed Protein Evolution Technology
نویسندگان
چکیده
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Abstract The main objectives of this three-year research project are: 1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. 2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and 3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA-strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different substrates gave different performance. Those rhamnolipids with plant oil as substrate …
منابع مشابه
A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors perfor...
متن کاملMicrobial Enhanced Oil Recovery Using Biosurfactant Produced by Alcaligenes faecalis
A bacterial strain (designated as Alcaligenes sp. MS-103) isolated from oil sample of the Aghajari oilfield in the south of Iran, was able to produce an effective extracellular lipopolysaccharide biosurfactant (1.2±0.05 g/l) on molasses as a sole carbon source. The highest surface tension reduction to level 20 mN/m was achieved by biosurfactant produced by cells grown on molasses under optimum ...
متن کاملThe art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology
The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry i...
متن کاملEngineering cell factories for producing building block chemicals for bio-polymer synthesis
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the ...
متن کاملA Pore Scale Evaluation of Produced Biosurfactants for Ex-situ Enhanced Oil Recovery
Microbial enhanced oil recovery (MEOR) is an economical method used to improve the oil recovery from reservoirs. In the MEOR techniques, by applying different microorganisms, a variety of products such as bioacid, biogas, biosurfactant, and biopolymer are generated, among which biosurfactant, one of the important metabolites, is produced by bacteria. It is worthy to note that bacteria are suita...
متن کامل